§ 23.623

- (ii) The deformation requirements of §23.305 at a load of 1.15 times the limit load.
- (3) Examples of these castings are structural attachment fittings, parts of flight control systems, control surface hinges and balance weight attachments, seat, berth, safety belt, and fuel and oil tank supports and attachments, and cabin pressure valves.
- (d) *Non-critical castings*. For each casting other than those specified in paragraph (c) or (e) of this section, the following apply:
- (1) Except as provided in paragraphs (d)(2) and (3) of this section, the casting factors and corresponding inspections must meet the following table:

Casting factor	Inspection
2.0 or more Less than 2.0 but more than 1.5.	100 percent visual. 100 percent visual, and magnetic particle or penetrant or equivalent nondestructive inspection methods.
1.25 through 1.50	100 percent visual, magnetic par- ticle or penetrant, and radio- graphic, or approved equivalent nondestructive inspection meth- ods.

- (2) The percentage of castings inspected by nonvisual methods may be reduced below that specified in subparagraph (d)(1) of this section when an approved quality control procedure is established.
- (3) For castings procured to a specification that guarantees the mechanical properties of the material in the casting and provides for demonstration of these properties by test of coupons cut from the castings on a sampling basis—
- (i) A casting factor of 1.0 may be used; and
- (ii) The castings must be inspected as provided in paragraph (d)(1) of this section for casting factors of "1.25 through 1.50" and tested under paragraph (c)(2) of this section.
- (e) Non-structural castings. Castings used for non-structural purposes do not require evaluation, testing or close inspection.

[Doc. No. 4080, 29 FR 17955, Dec. 18, 1964, as amended by Amdt. 23–45, 58 FR 42164, Aug. 6, 1993]

§23.623 Bearing factors.

- (a) Each part that has clearance (free fit), and that is subject to pounding or vibration, must have a bearing factor large enough to provide for the effects of normal relative motion.
- (b) For control surface hinges and control system joints, compliance with the factors prescribed in §§23.657 and 23.693, respectively, meets paragraph (a) of this section.

[Amdt. 23-7, 34 FR 13091, Aug. 13, 1969]

§ 23.625 Fitting factors.

For each fitting (a part or terminal used to join one structural member to another), the following apply:

- (a) For each fitting whose strength is not proven by limit and ultimate load tests in which actual stress conditions are simulated in the fitting and surrounding structures, a fitting factor of at least 1.15 must be applied to each part of—
 - (1) The fitting;
 - (2) The means of attachment; and
- (3) The bearing on the joined members.
- (b) No fitting factor need be used for joint designs based on comprehensive test data (such as continuous joints in metal plating, welded joints, and scarf joints in wood).
- (c) For each integral fitting, the part must be treated as a fitting up to the point at which the section properties become typical of the member.
- (d) For each seat, berth, safety belt, and harness, its attachment to the structure must be shown, by analysis, tests, or both, to be able to withstand the inertia forces prescribed in §23.561 multiplied by a fitting factor of 1.33.

[Doc. No. 4080, 29 FR 17955, Dec. 18, 1964, as amended by Amdt. 23–7, 34 FR 13091, Aug. 13, 1960]

§23.627 Fatigue strength.

The structure must be designed, as far as practicable, to avoid points of stress concentration where variable stresses above the fatigue limit are likely to occur in normal service.

§ 23.629 Flutter.

(a) It must be shown by the methods of paragraph (b) and either paragraph

- (c) or (d) of this section, that the airplane is free from flutter, control reversal, and divergence for any condition of operation within the limit V-n envelope and at all speeds up to the speed specified for the selected method. In addition—
- (1) Adequate tolerances must be established for quantities which affect flutter, including speed, damping, mass balance, and control system stiffness; and
- (2) The natural frequencies of main structural components must be determined by vibration tests or other approved methods.
- (b) Flight flutter tests must be made to show that the airplane is free from flutter, control reversal and divergence and to show that—
- (1) Proper and adequate attempts to induce flutter have been made within the speed range up to $V_{\rm D}$;
- (2) The vibratory response of the structure during the test indicates freedom from flutter;
- (3) A proper margin of damping exists at $V_{\rm D}$; and
- (4) There is no large and rapid reduction in damping as $V_{\rm D}$ is approached.
- (c) Any rational analysis used to predict freedom from flutter, control reversal and divergence must cover all speeds up to $1.2~\rm V_D.$
- (d) Compliance with the rigidity and mass balance criteria (pages 4-12), in Airframe and Equipment Engineering Report No. 45 (as corrected) "Simplified Flutter Prevention Criteria" (published by the Federal Aviation Administration) may be accomplished to show that the airplane is free from flutter, control reversal, or divergence if—
- (1) V_D/M_D for the airplane is less than 260 knots (EAS) and less than Mach 0.5,
- (2) The wing and aileron flutter prevention criteria, as represented by the wing torsional stiffness and aileron balance criteria, are limited in use to airplanes without large mass concentrations (such as engines, floats, or fuel tanks in outer wing panels) along the wing span, and
 - (3) The airplane—
- (i) Does not have a T-tail or other unconventional tail configurations;

- (ii) Does not have unusual mass distributions or other unconventional design features that affect the applicability of the criteria, and
- (iii) Has fixed-fin and fixed-stabilizer surfaces.
- (e) For turbopropeller-powered airplanes, the dynamic evaluation must include—
- (1) Whirl mode degree of freedom which takes into account the stability of the plane of rotation of the propeller and significant elastic, inertial, and aerodynamic forces, and
- (2) Propeller, engine, engine mount, and airplane structure stiffness and damping variations appropriate to the particular configuration.
- (f) Freedom from flutter, control reversal, and divergence up to $V_{\rm D}/M_{\rm D}$ must be shown as follows:
- (1) For airplanes that meet the criteria of paragraphs (d)(1) through (d)(3) of this section, after the failure, malfunction, or disconnection of any single element in any tab control system.
- (2) For airplanes other than those described in paragraph (f)(1) of this section, after the failure, malfunction, or disconnection of any single element in the primary flight control system, any tab control system, or any flutter damper.
- (g) For airplanes showing compliance with the fail-safe criteria of §§23.571 and 23.572, the airplane must be shown by analysis to be free from flutter up to V_D/M_D after fatigue failure, or obvious partial failure, of a principal structural element.
- (h) For airplanes showing compliance with the damage tolerance criteria of §23.573, the airplane must be shown by analysis to be free from flutter up to $V_{\rm D}/M_{\rm D}$ with the extent of damage for which residual strength is demonstrated.
- (i) For modifications to the type design that could affect the flutter characteristics, compliance with paragraph (a) of this section must be shown, except that analysis based on previously approved data may be used alone to show freedom from flutter, control reversal and divergence, for all speeds up

§ 23.641

to the speed specified for the selected method.

[Amdt. 23–23, 43 FR 50592, Oct. 30, 1978, as amended by Amdt. 23–31, 49 FR 46867, Nov. 28, 1984; Amdt. 23–45, 58 FR 42164, Aug. 6, 1993; 58 FR 51970, Oct. 5, 1993; Amdt. 23–48, 61 FR 5148, Feb. 9, 1996]

WINGS

§23.641 Proof of strength.

The strength of stressed-skin wings must be proven by load tests or by combined structural analysis and load tests.

CONTROL SURFACES

§23.651 Proof of strength.

- (a) Limit load tests of control surfaces are required. These tests must include the horn or fitting to which the control system is attached.
- (b) In structural analyses, rigging loads due to wire bracing must be accounted for in a rational or conservative manner

§23.655 Installation.

- (a) Movable surfaces must be installed so that there is no interference between any surfaces, their bracing, or adjacent fixed structure, when one surface is held in its most critical clearance positions and the others are operated through their full movement.
- (b) If an adjustable stabilizer is used, it must have stops that will limit its range of travel to that allowing safe flight and landing.

[Doc. No. 4080, 29 FR 17955, Dec. 18, 1964, as amended by Amdt. 23–45, 58 FR 42164, Aug. 6, 1993]

§23.657 Hinges.

- (a) Control surface hinges, except ball and roller bearing hinges, must have a factor of safety of not less than 6.67 with respect to the ultimate bearing strength of the softest material used as a bearing.
- (b) For ball or roller bearing hinges, the approved rating of the bearing may not be exceeded.

[Doc. No. 4080, 29 FR 17955, Dec. 18, 1964, as amended by Amdt. 23–48, 61 FR 5148, Feb. 9, 1996]

§ 23.659 Mass balance.

The supporting structure and the attachment of concentrated mass balance weights used on control surfaces must be designed for—

- (a) 24 g normal to the plane of the control surface;
 - (b) 12 g fore and aft; and
 - (c) 12 g parallel to the hinge line.

CONTROL SYSTEMS

§ 23.671 General.

- (a) Each control must operate easily, smoothly, and positively enough to allow proper performance of its functions
- (b) Controls must be arranged and identified to provide for convenience in operation and to prevent the possibility of confusion and subsequent inadvertent operation.

§ 23.672 Stability augmentation and automatic and power-operated systems.

If the functioning of stability augmentation or other automatic or power-operated systems is necessary to show compliance with the flight characteristics requirements of this part, such systems must comply with §23.671 and the following:

- (a) A warning, which is clearly distinguishable to the pilot under expected flight conditions without requiring the pilot's attention, must be provided for any failure in the stability augmentation system or in any other automatic or power-operated system that could result in an unsafe condition if the pilot was not aware of the failure. Warning systems must not activate the control system.
- (b) The design of the stability augmentation system or of any other automatic or power-operated system must permit initial counteraction of failures without requiring exceptional pilot skill or strength, by either the deactivation of the system or a failed portion thereof, or by overriding the failure by movement of the flight controls in the normal sense.
- (c) It must be shown that, after any single failure of the stability augmentation system or any other automatic or power-operated system—